Lessons Learnt from RAPID Mooring

WB4 partial collapse

5th UK Moorings Workshop

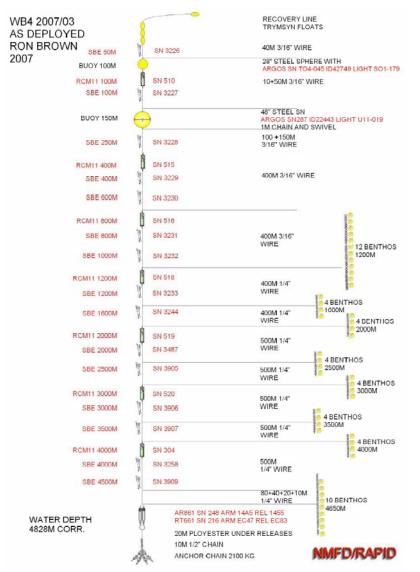
Darren Rayner¹ and Mario Brito²

¹NERC Strategic Research Division, Ocean Observing and Climate Research Group

²NERC National Marine Facilities, Underwater Systems Laboratory Contact: {darren.rayner; mpb2o07}@noc.soton.ac.uk

Outline

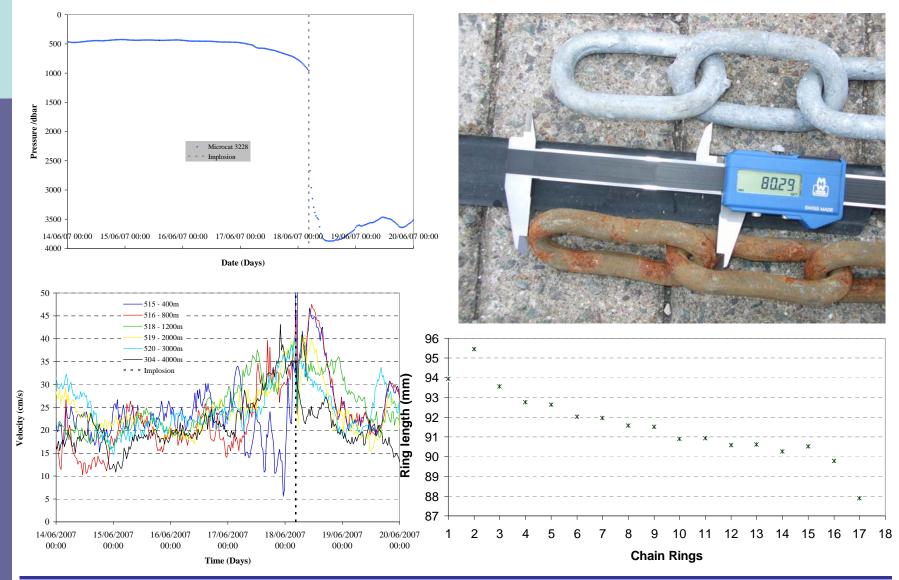
> WB4 Mooring aims and configuration


- > What went wrong
- Initial findings
- ➢ Evidence
- Most likely cause
- Lessons learnt

Rayner, D., Brito, M.P., Cunningham, S., Griffiths, G. and Stevenson, P., 2008. *Investigation as to the cause of the partial collapse of the 26° N mooring wb4_4_200703*. National Oceanography Centre Southampton, 35pp. (National Oceanography Centre Southampton Research and Consultancy Report, 57).

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTON AND NATURAL ENVIRONMENT RESEARCH COUNCIL

WB4 Mooring


□The wb4_4_200703 was deployed in Spring 2007 from the RV *Ronald H. Brown* cruise RB0701.

□The main support buoyancy – a 48inch-diameter steel sphere – imploded approximately three months after deployment (deployed 31/3/07, imploded 18/6/07), causing a partial collapse of the mooring.

□This collapse meant that no measurements were made shallower than approximately 1600m for nine months of the mooring deployment.

Initial findings

National Oceanography Centre, Southampton, 5-6 May 2010.

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTON AND NATURAL ENVIRONMENT RESEARCH COUNCIL

4

Hypothesis

48" sphere imploded first

Design currents – unexpected knockdown

>The site was deeper than expected

➤Shortening of the chains

>The mooring may not ever be completely upright

5

Design currents

Maximum depth and knockdown experienced by 48" steel sphere for different design scenarios

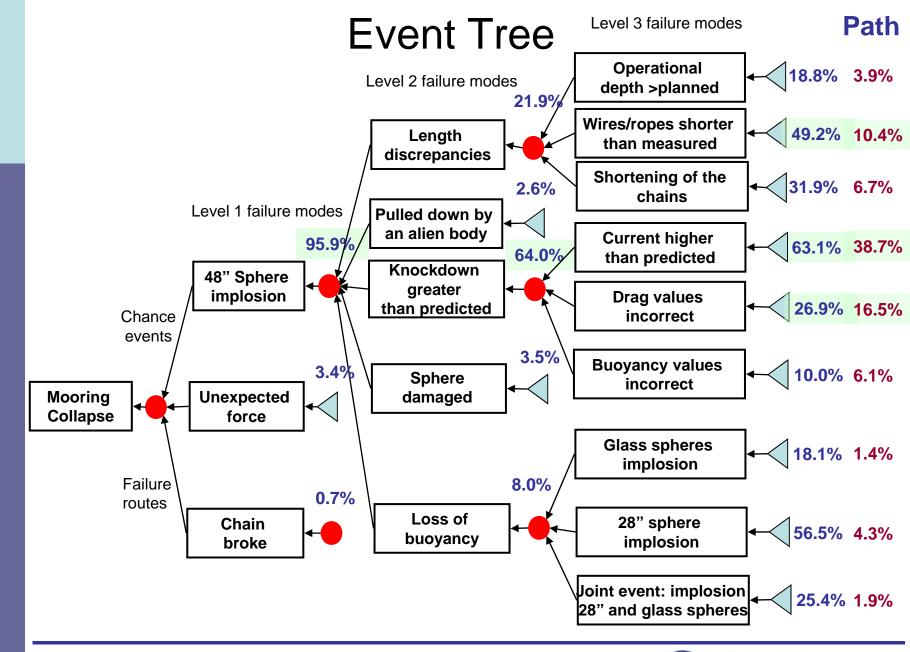
	Current profile									
Design	As used in original design		Strongest measured by WB4_4_20070 3		Maximum from historical data		At minimum knockdown of WB4_4_20070 3			
	Max depth (m)	Knock- down (m)	Max depth (m)	Knock -down (m)	Max depth (m)	Knock -down (m)	Max depth (m)	Knock -down (m)		
As intended	464.1	277.3	357.0	170.2	627.6	440.7	187.1	0.2		
As deployed	526.0	302.0	452.9	228.9	814.6	590.7	224.2	0.3		
As recovered	545.8	321.0	471.5	246.6	856.5	631.7	225.2	0.3		

National Oceanography Centre, Southampton, 5-6 May 2010.

6

Shortening the moorings wires

	Design	Current profile								
Sphere		As used in original design		Strongest measured by WB4_4_200703		Maximum from historical data		At minimum knockdown of WB4_4_200703		
		Max depth (m)	Knock- down (m)	Max depth (m)	Knock- down (m)	Max depth (m)	Knock- down (m)	Max depth (m)	Knock- down (m)	
28"	As deployed	498.9	278.4	431.9	211.4	791.4	570.9	222.0	0.2	
	As recovered (3 glass lost)	517.9	296.5	449.7	228.3	832.0	610.6	221.7	0.3	
48"	As deployed	557.2	275.0	492.7	210.6	852.1	570.0	282.4	0.2	
	As recovered (3 glass lost)	576.3	293.3	510.6	227.6	892.7	609.7	283.3	0.3	
	As recovered (3 glass lost) plus assume loss of 28" sphere	615.4	330.9	570.5	283.6	1026.9	742.5	287.3	2.8	


Maximum depth and knockdown experienced by the 28" and 48" steel spheres for different design scenarios – using the shortened wires design "short2"

Model sensitivity to drag coefficients, buoyancy and currents

	48" Steel Sphere		28" Steel Sphere	
	Design depth (m)	Knock- down (m)	Design depth (m)	Knock- down (m)
25% increase in Drag on the glass spheres	490.1	265.3	428.4	266.2
10% decrease on the glass spheres buoyancy	512.2	286.8	450.3	287.5
25% decrease in glass sphere buoyancy	564.3	337.8	502.0	338.2
5% decrease of the 28" sphere buoyancy	493.2	268.3	431.5	269.2
10% decrease in the 28" sphere buoyancy	496.1	271.0	434.5	272.1
20% decrease on the 28" sphere buoyancy	498.8	273.4	437.4	274.7
20% increase in current plus 5% increase in the 28" sphere buoyancy	889.0	664.0	826.0	664.3
20% increase in current plus implosion of the 28" sphere	1038.7	811.4	-	-
10% increase in current plus implosion of the 28" sphere	661.5	434.2	-	-

9

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTON AND NATURAL ENVIRONMENT RESEARCH COUNCIL

Summary of lessons learnt

Technical aspects:

≻Wire lengths

Components specifications, e.g. chain, 48" sphere

Design currents/Extreme events modelling

Organisational

PRESIS us system development lifecycle

≻V&V of the software design tool. Need for a dynamic tool.

➢ Fault logging and reporting procedures. Fault database on lessons learnt
National Oceanograph

